Cover Crop Fertility

John Lauzon

Cover Crops and Plant Nutrients

- Nitrogen scavenging
- Nitrogen source
- Cover crops also require plant nutrients for growth

Essential Plant Nutrients

- Macro- vs micronutrients
- Macronutrients (needed in large quantities)
 - Carbon, Hydrogen, and Oxygen
 - Nitrogen, Phosphorus, and Potassium
 - Calcium, Magnesium, and Sulphur (These are often called secondary nutrients)
- Micronutrients (needed in small quantities)

-Iron, Manganese, Molybdenum. Boron, Zinc, Cloride, Cobalt, Nickel

Typical change in soil mineral N levels in a unfertilized field in Ontario

Fall cover crop biomass production as influenced by manure N application rate

	Manure N application rate (kg N ha ⁻¹)		
Cover crop species	0	134	266
	Cover crop biomass (kg ha ⁻¹)		
Red clover*	2180 a+	1965 a	2355 a
Oilseed radish	565 a	1085 ab	1290 b
Perennial ryegrass	1180 a	2250 b	2700 b
Oats	1340 a	2 390 b	2520 b

^{*} Average of fall and spring control plots

^{*} Values with different letters are significantly different (P< 0.05)

Nitrogen Cycling N₂ Gas 78 % of atmosphere VO₃ **Volatilization Erosion Biological** Deposition **Fertilizer Harvest Fixation Soil Organic matter Mineralization Plant** uptake NH₄+ **Immobilization** N_2O, N_2 **Nitrification** NO_3 **Denitrification**

Leaching

Clay

Typical Water Budget for Ontario

End of Season Cover crop N Content and Biomass

Crop	Plant N	Plant Mass
	(kg ha ⁻¹)	
Annual Rygrass	33 a	2530 a
Oilseed Radish	55 b	3680 b
Red Clover	45 ab	2870 a

Cover Crop Effects on following May – June Soil NO3-N Concentrations

Grain N Content and Yield as influenced by Cover Crop

Crop	Plant N	Yield
	(kg ha ⁻¹)	
Annual Rygrass	63 a	6770 a
Oilseed Radish	123 b	9520 b
Red Clover	142 c	10670 c
No Cover	110 b	9130 b

Nitrogen Cycling

Mineralization - Immobilization

When organic residues are decomposed in the Soil, N can either be released (mineralization) or used from the soil (immobilization)

The Carbon/nitrogen ratio of organic materials added to the soil largely influence which will occur

C:N Ratio and N Release During Early Decomposition

C:N ratio < 25:1 = mineralization

C:N ratio > 25:1 = immobilization

C:N Ratio of soil microbes ≈ 8:1

How can something with a C:N ratio of 8:1 get enough nitrogen from organic material with a C:N ratio of 25:1?

Mineralization - Immobilization

High C:N ratio

Factors Impacting the Carbon to Nitrogen Ratio

- Plant species
- Plant age
- Soil nitrogen availability
- Plant part

Carbon:Nitrogen Ratio

Soil Microbes 4:1 to 9:1

Soil Organic Matter 10:1 to 12:1

Corn Stalks 60:1

Wheat Straw 80:1

Solid Cattle Manure 20:1 to 40:1

Sawdust 500:1

Hairy Vetch cover crop 11:1

Red Clover 15:1

Oilseed radish 20:1

Rye vegetative 26:1

Grain N Content and Yield as influenced by Cover Crop

Crop	Plant N	Yield
	(kg ha ⁻¹)	
Annual Rygrass	63 a	6770 a
Oilseed Radish	123 b	9520 b
Red Clover	142 c	10670 c
No Cover	110 b	9130 b

Mineralization - Immobilization

High C:N ratio

Factors Influencing the Rate of Decomposition of Organic Matter

- Type of organic matter
- Size of organic matter
- Amount of mixing in the soil
- Temperature
- Moisture
- Oxygen status
- Soil pH
- Nutrient content

Managing Nutrient in a Cover Crop System

Cover crop choice is largely dependant on you objectives

Non –legume cover crops may not have sufficient nitrogen

Timing is critical for recovering N from cover crops